ASYMPTOTIC BEHAVIOR OF NONLINEAR VOLTERRA DIFFERENCE SYSTEMS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations

are suitable functions. We establish sufficient conditions for the boundedness and the convergence of x i as i → ∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.

متن کامل

Asymptotic Behavior of Solutions of Nonlinear Difference Equations

The nonlinear difference equation (E) xn+1 − xn = anφn(xσ(n)) + bn, where (an), (bn) are real sequences, φn : −→ , (σ(n)) is a sequence of integers and lim n−→∞ σ(n) =∞, is investigated. Sufficient conditions for the existence of solutions of this equation asymptotically equivalent to the solutions of the equation yn+1 − yn = bn are given. Sufficient conditions under which for every real consta...

متن کامل

Asymptotic behavior of nonlinear networked control systems

– The deÞning characteristic of a networked control system (NCS) is having a feedback loop that passes through a local area computer network. Our two-step design approach includes using standard control methodologies and choosing the network protocol and bandwidth in order to ensure important closed-loop properties are preserved when a computer network is inserted into the feedback loop. For su...

متن کامل

Asymptotic Behavior of Solutions of a Class of Nonlinear Difference Systems

In this paper we study the asymptotic behavior of the two-dimensional nonlinear difference system { ∆x(n) = f(n, x(n), y(n)) ∆y(n) = g(n, y(n), x(n)), and necessary as well as sufficient conditions are established. AMS Subject Classifications: 39A10, 34A97.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2007

ISSN: 1015-8634

DOI: 10.4134/bkms.2007.44.1.177